The response of hot wires in high Reynolds-number turbulent pipe flow

نویسندگان

  • J D Li
  • B J McKeon
  • W Jiang
  • J F Morrison
  • J Smits
چکیده

Issues concerning the accuracy of hot-wire measurements in turbulent pipe flow are addressed for pipe Reynolds numbers up to 6 × 106 and hot-wire Reynolds numbers up to Rew ≈ 250. These include the optimization of spatial and temporal resolution and the associated feature of signal-to-noise ratio. Very high wire Reynolds numbers enable the use of wires with reduced length-to-diameter ratios compared to those typical of atmospheric conditions owing to increased wire Nusselt numbers. Simulation of the steady-state heat balance for the wire and the unetched portion of wire are used to assess static end-conduction effects: they are used to calculate wire Biot numbers, √ c0l, and fractional end-conduction losses, σ , which confirm the ‘conduction-only’ theory described by Corrsin. They show that, at Rew ≈ 250, the wire length-to-diameter ratio can be reduced to about 50, while keeping √ c0l > 3 and σ < 7% in common with accepted limits at Rew ≈ 3. It is shown that these limits depend additionally on the choice of wire material and the length of unetched wire. The dynamic effects of end-cooling are also assessed using the conduction-only theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows

A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...

متن کامل

Numerical Simulation of Turbulent Subsonic Compressible Flow through Rectangular Microchannel

In this study, turbulent compressible gas flow in a rectangular micro-channel is numerically investigated. The gas flow assumed to be in the subsonic regime up to Mach number about 0.7. Five low and high Reynolds number RANS turbulence models are used for modeling the turbulent flow. Two types of mesh are generated depending on the employed turbulence model. The computations are performed for R...

متن کامل

Numerical Study of Single Phase/Two-Phase Models for Nanofluid Forced Convection and Pressure Drop in a Turbulence Pipe Flow

In this paper, the problem of turbulent forced convection flow of water- alumina nanofluid in a uniformly heated pipe has been thoroughly investigated. In numerical study, single and two-phase models have been used. In single-phase modeling of nanofluid, thermal and flow properties of nanofluid have been considered to be dependent on temperature and volume fraction. Effects of volume fraction a...

متن کامل

Numerical Investigation of Turbulent Mass Transfer in a 90° Bend

This paper presents a numerical study of local mass transfer coefficients in a 90° bend using the RNG version of k–e model to include the influence of curvature on the turbulent transport. Simulations were performed for flow through a 90°, 3-D bend for Reynolds numbers of 13500, 90000, and 390000, Schmidt numbers of 2.53 and 700 and curvature ratios of 1.5, 2, and 2.5. The differences betwe...

متن کامل

Experimental investigation for wake of the circular cylinder by attaching different number of tripping wires

An experimental study is conducted on flow past a circular cylinder fitted with some tripping wires on its surface. The work investigates the dependency of the critical wire locations on the wire size and Reynolds numbers, and examines the wake and vortex shedding characteristics in an effort to advance the understanding of the critical wire effects beyond the existing literature. The primary a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004